STEM DEPARTMENT
(Science, Technology, Engineering, Mathematics, and Business)

MATHEMATICS COURSE OFFERINGS

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Grade Level</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra I A</td>
<td>9,10</td>
<td>Full Year</td>
</tr>
<tr>
<td>Algebra I B</td>
<td>9,10</td>
<td>Full Year</td>
</tr>
<tr>
<td>Enriched Algebra II</td>
<td>10,11</td>
<td>Full Year</td>
</tr>
<tr>
<td>Geometry H</td>
<td>9,10</td>
<td>Full Year</td>
</tr>
<tr>
<td>Geometry A</td>
<td>9,10,11</td>
<td>Full Year</td>
</tr>
<tr>
<td>Geometry B</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Algebra II H</td>
<td>9,10,11</td>
<td>Full Year</td>
</tr>
<tr>
<td>Algebra II A</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Algebra II B</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Math Applications in Society</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Precalculus H (AB or BC)</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Precalculus A</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Algebra III and Trigonometry</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Statistics Beyond the Classroom</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Statistics</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>AP Calculus (AB and BC)</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Calculus A</td>
<td>12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Statistics</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>@ AP Computer Science Principles</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>@ Programming with Python and JAVA</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>@ AP Computer Science A</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>@ App Development</td>
<td>12</td>
<td>Full Year</td>
</tr>
<tr>
<td>@ Academic Review in Math 1,2,3</td>
<td>9,10,11</td>
<td>Full Year</td>
</tr>
<tr>
<td>@ SAT Prep Math</td>
<td>10, 11, 12</td>
<td>Semester</td>
</tr>
</tbody>
</table>

@ May not be used to fulfill the mathematics graduation requirement of three years of mathematics. Note: All elective courses will be offered pending staff availability and student requests.

COURSE LEVELS

All Randolph High School math courses prepare students for college. In general, students at a higher level are expected to be more independent, more self-disciplined, and more self-motivated. They will explore content matter to a greater depth. The development of positive math attitudes, communication and critical thinking skills, career awareness, and the use of modern technology will be incorporated in the curriculum by infusion into lesson presentations on a regular basis.

Algebra I, Geometry, Algebra II, and Pre-Calculus are offered at several levels, (e.g. Honors, A, and B). (See Course descriptions for specific levels offered). Advanced Placement courses are offered in Calculus, Computer Science, and Statistics. Students are placed in appropriate levels based upon teacher recommendations, classroom performance, and performance on standardized tests. Course Recommendation Process.
Teacher recommendation, classroom performance, and diagnostic assessments are the primary criteria for determining appropriate course levels. When making recommendations for courses, teachers consider the following criteria:

Recommending a move to a different level: At least three of the listed indicators should be present.

Moving Up a Level:
- An average of 97 or better
- An apparent ease with assignments
- An ability to grasp concepts quickly
- A capacity for thinking at a deeper level with greater insight
- An interest in the subject matter more appropriate to a higher level student
- Success in a skills based test (Mathematics Only)

Moving Down a Level: (from Honors to an A level class)
- Averaging a C or lower
- Struggling or seeming overwhelmed by the work
- An inability to grasp concepts without additional, separate, individual explanation
- Critical thinking and writing skill levels noticeably lower than those of peers
- Lack of motivation to meet the challenges of an accelerated course

Moving Down a Level: (Moving from A level to an B level class)
- Averaging a D or lower
- Struggling or seeming overwhelmed by the work
- An inability to grasp concepts without additional, separate, individual explanation
- Skill level significantly below the average

Please note that students who have an A in a class may simply be appropriately placed and are able to shine at that level. Having an A average alone does not indicate that a student should move to a more advanced level.

Regarding lack of motivation: If students do not submit work, it is difficult to gauge ability level. Although having difficulties completing homework assignments will naturally impact a student’s grade, homework is only a portion of the average. Therefore, it stands to reason if a student is appropriately placed, he/she should be able to maintain a high C average based on tests, essays, and participation.

SUMMER ASSIGNMENTS
Some courses, especially the AP courses, may require a summer assignment. Any assignment will be available either from the teacher prior to leaving school in June or will be available on the school website. These assignments will be communicated to the students who are enrolled in classes with a summer requirement prior to leaving for summer break.
Statistics or AP Statistics may be taken by any student after successfully completing Algebra II.

In general, students should expect to follow a track of Algebra I, Geometry, and Algebra II beginning in either 8th or 9th grade. Most often, students will stay in the same level through the progression of math courses. There are guidelines posted in the introduction regarding reasons that may precipitate a change.

Note: Students who wish to take a 4th year of math but do not wish to pursue a math/science related field should consider Math Applications in Society, Discrete Math, Statistics Beyond the Classroom or Statistics A. Those who are looking to continue into Calculus or who need to complete an Algebra-based mathematics requirement (college algebra, pre-calculus etc...) should continue with the more traditional course offerings.
COURSE DESCRIPTIONS

ALGEBRA I
Levels A, B MAT100, MAT110 Grades 9,10 Full Year
NCAA Approved Course

This mathematics course provides the student an opportunity to gain elementary algebraic skills and apply these skills to problem solving. Topics of studies include: real number operations, linear equations and inequalities, polynomials, special products and factoring, rational expressions and equations, functions and relations, data analysis, linear systems, the real number system, and quadratic equations.

ENRICHED ALGEBRA II
Level B MAT340 Grades 10,11 Full Year
NCAA Approved Course

This course is the second half of the Enriched Algebra sequence, and the second half of Algebra I.

Prerequisite: Enriched Algebra I

GEOMETRY
Levels H, A, B MAT200, MAT210, MAT220 Grades 9,10,11,12 Full Year
NCAA Approved Course

This mathematics course provides the student an opportunity for a study of an axiomatic system and deductive reasoning as applied to Euclidean geometry. Topics to be studied include: lines, angles, triangles, congruence of triangles, parallel lines, transformations, geometric constructions, analytic geometry, polygons, proportions, similarity, circles, surface area, and volume. For the Honors level class math skills should be excellent, students should be ready for independent self-motivated work, emphasis is placed on application and problem solving, abstract and visualization skills are important, and memorization is insufficient to be successful.

Prerequisite: Algebra I or Enriched Algebra II Honors Prerequisite: Algebra 1 teacher recommendation

ALGEBRA II
Levels H, A, B MAT300, MAT310, MAT320 Grades 9,10,11,12 Full Year
NCAA Approved Course

This mathematics course provides the student an opportunity to study mathematical structural theory, gain intermediate algebraic skills, and apply these skills to problem solving. Topics include: polynomials and factoring, rational numbers and expressions, relations and functions, data analysis, irrational numbers and quadratic equations, quadratic relations and systems, exponential and logarithmic functions, and complex numbers.

Prerequisite: Geometry, unless a student is doubling up and taking Geometry and Algebra II concurrently which requires supervisor permission.
MATH APPLICATIONS IN SOCIETY MAT900 Grades 11,12 Full Year
In this course, problem-based learning of mathematics in real life applications will be emphasized. Students will gather and analyze data in order to build, use, and evaluate mathematical models of real world situations and phenomena. Most units are self-paced and may include topics such as international travel, politics and polls, math in sports, and the finance behind purchasing or leasing cars and homes. Activities will involve the application of mathematical concepts and practices with an emphasis on using appropriate technology, as well as critical thinking, and problem solving skills. Activities will develop mathematical practices and will enhance understanding of, and facility with select topics from Algebra II, Geometry, Statistics, Finance, and Discrete Mathematics.

Prerequisite: Geometry. Note: this course can serve as the third year of math to satisfy the graduation requirement.

PRECALCULUS
Level A MAT410 Grades 11,12 Full Year
NCAA Approved Course
PreCalculus will prepare students for the study of Calculus at the high school or college level. Topics to be studied include: polynomial functions, matrices and vectors, trigonometry, sequences and series, polar coordinates, complex numbers, exponential and logarithmic functions, analytic geometry, economics, limits and derivatives, and probability and statistics.

PRECALCULUS – HONORS AB
Levels H MAT420 Grades 11,12 Full Year
NCAA Approved Course
PreCalculus Honors AB will prepare students for our AP Calculus AB course. Topics studied match those of the PreCalculus A course, but with greater rigor and depth.

PRECALCULUS – HONORS BC
Levels H MAT430 Grades 11,12 Full Year
NCAA Approved Course
PreCalculus Honors BC will prepare students for our AP Calculus BC course. Topics will match that of the Honors AB course, with additional units of study focused on limits and basic differentiation techniques.

Prerequisite: Algebra II and teacher recommendation

ALGEBRA III/TRIGONOMETRY MAT330 Grades 11,12 Full Year
NCAA Approved Course
This course is for a student wanting to continue developing skills from Algebra II and prepare them for the study of Precalculus or College Algebra. Topics to be studied will include a more in-depth look at many of the topics of Algebra II and preview topics seen in Precalculus which can include functions and their graphs, right triangle trigonometry, the trigonometric functions of any angle, graphs of trigonometric functions, laws of sine and cosine. This course is taking the place of Precalculus B. Precalculus B will not be offered as a course.

Prerequisite: Algebra II and teacher recommendation. This is not a complete Precalculus course and will not provide an adequate foundation for Calculus. It will prepare students for success in Precalculus or college algebra.

DISCRETE MATH MAT875 Grades 11,12 Semester
NCAA Approved Course
Discrete mathematics affords many students the opportunity to experience success and enjoyment in mathematics classes. Those who have encountered numerous difficulties with computation and the complexities of mathematics in the past can be reached with appealing problems from discrete mathematics that have few formal skills as requisites. This will be the math that doesn’t, on first glance, feel like math. Ever wonder if there are different methods for how people are elected? How can you divide up a bag of different types of candy fairly taking preferences and needs into consideration? How do postmen and garbage collectors use math to make their job more efficient? If you would like to explore how math plays a factor in each of these decisions, then consider Discrete Math.

Prerequisite: Algebra II

STATISTICS BEYOND THE CLASSROOM
MAT885
Grades 11,12
Semester
This course introduces students to statistical methods and reasoning as applied to practical problems. Topics include: collecting and analyzing data, descriptive statistics, sampling, surveys, graphs, and use of technology to understand statistics. Ever wonder how a new pharmaceutical drug gets tested? Curious about the reliability and design of the polls used during a political year? What questions should you consider when you read an article involving statistics – in written or graphical form? If you are curious about these questions, consider taking this class.

Prerequisite: Algebra II

STATISTICS
MAT840
Grades 11, 12
Full Year
NCAA Approved Course
This Statistics course will prepare students for the study of statistics at the college level. Topics include: descriptive statistics, correlation, regression, probability, binomial and normal distributions, sampling, confidence intervals, analysis and presentation of data, an introduction to experimental design, variability and uncertainty in data, techniques of statistical inference and decision making. Students are expected to use technology to analyze and present data. Course work will also include a project in each semester that includes the collection and analysis of real data. Students are encouraged to incorporate their knowledge and interest in other disciplines into their project work.

Prerequisite: Algebra II

AP CALCULUS
MAT500, MAT510
Advanced Placement (AB or BC) - Level AP
Grade 11,12
Full Year
NCAA Approved Course
These are advanced placement courses in calculus and the curriculum is determined by the College Board. They cover topics including concepts and skills of limits, derivatives, definite integrals, and the Fundamental Theorem of Calculus. Students will learn how to approach calculus concepts and problems represented graphically, numerically, analytically, and verbally. Emphasis will be on an understanding of processes. Offered at both the AB and the BC levels, students who successfully complete the AB test may be given credit for one semester of college calculus while those who successfully complete the BC test may be given credit for two semesters of college calculus. Students are encouraged to take the Advanced Placement Examination. To meet the course objectives, students are encouraged to complete a summer review packet due the first day of school.

Prerequisite: PreCalculus H

CALCULUS
Level H
MAT400
Grade 12
Full Year
NCAA Approved Course

As an introductory calculus course for students who have demonstrated an understanding of mathematics, this course contains the concepts of differential and integral calculus. This course is designed to familiarize the students with these topics and their application, so they will be at an advantage when encountering them at the college level.

Prerequisite: Precalculus

AP STATISTICS MAT540
Advanced Placement - Level AP Grades 11,12 Full Year
NCAA Approved Course
As an advanced placement course in statistics, this is a college level course designed for students who have demonstrated achievement in Algebra II and interest in statistics. The development of descriptive and inferential statistics follows the recommendations of the College Entrance Examination Board and includes the four major themes: exploratory analysis, planning a study, probability, and statistical inference. Students are encouraged to take the Advanced Placement Examination.

Prerequisite: Algebra II and teacher recommendation.

AP COMPUTER SCIENCE PRINCIPLES** MAT550
Advanced Placement - Level AP Grades 9,10,11,12 Full Year
NCAA Approved Course
This AP class is designed for any student with a passion for computer technology. Students do not need any background in coding. This course would be appropriate for a freshmen looking to take an AP course and who has successfully completed Algebra I. The objectives of the AP Computer Science Principles course is to introduce students to the central ideas of computer science, instilling the ideas and practices of computational thinking and inviting students to understand how computing changes the world. This course promotes deep learning of computational content, develops computational thinking skills, and engages students in the creative aspects of computer science. The course is unique in its focus on fostering students to be creative.

Note: A background in programming is not necessary for success in this course.

Prerequisite: Algebra I

PROGRAMMING WITH PYTHON AND JAVA** MAT850 Grades 10,11,12 Full Year
Level Honors
NCAA Approved Course
In this course students will develop computer programming techniques and learn the basic structures and syntax of the Python and JAVA programming languages. One semester will be spent writing, debugging, testing, and running programs in Python, and the other in JAVA.

Prerequisite: AP Computer Science Principles or successful completion of a performance task.

AP COMPUTER SCIENCE A** MAT530
Advanced Placement - Level AP Grades 11,12 Full Year
NCAA Approved Course
++ Course is part of a Pathway Program. For information on Pathway Programs please refer to the Special Programs Handbook on the RHS Counseling Site.
In this Advanced Placement course, students will continue to develop computer programming techniques learned in previous classes as well as computer science topics determined by the College Board. College credits may be earned by taking the Advanced Placement Exam in the spring. Major topics include: JAVA programming methodology, features of programming languages, algorithms, computer systems, and responsible use of computer systems. Students are encouraged to take the Advanced Placement Examination.

Prerequisite: Programming with Python and JAVA

APP DEVELOPMENT

MAT860

Level Honors

Grades 10, 11, 12

Full Year

NCAA Approved Course

This course is designed to guide students through the process of developing a mobile app of their own design. Students can elect to use either the Swift programming language for iOS app development, or the Java programming language for Android. Many aspects of the course are self-paced, meaning students with little programming experience can take the time to learn the intricacies of their chosen language along the way, while those with more programming experience can review specifics to the tasks at hand and quickly begin the design process. Topics include but are not limited to familiarization with a selected programming language, user interface design, data storage, web connectivity, and app distribution, which students learn while developing several mini-apps along the way. The course culminates in the creation of an app of each student's personal design.

Prerequisite: AP Computer Science Principles

ACADEMIC REVIEW MATH

MAT610

Grade 9, 10, 11

Semester

These courses are designed to identify and remediate the basic mathematical needs of students at the high school level. Emphasis is placed on understanding concepts of Algebra I, Geometry, and Algebra II, and application of skills to problem solving situations. An individualized approach is used to prepare students for the PARCC assessments. These courses do not fulfill the mathematics requirement for graduation.

Prerequisite: District Identification

SAT PREP MATH

MAT865

Grade 10, 11, 12*

Semester

The SAT Prep course is designed to help students prepare for the rigors of taking the SAT test offered by the College Board. Our primary goal is to identify and implement test taking strategies using prerequisite knowledge to increase student performance. Students in this course should have passed Algebra 2 or should be taking it concurrently.

*SAT prep may be appropriate for some seniors. Speak to your school counselor.

++ Course is part of a Pathway Program. For information on Pathway Programs please refer to the Special Programs Handbook on the RHS Counseling Site.
SCIENCE COURSE OFFERINGS

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Grade Level</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology H, A, B +</td>
<td>9</td>
<td>Full Year</td>
</tr>
<tr>
<td>Chemistry H, A, B +</td>
<td>9,10</td>
<td>Full Year</td>
</tr>
<tr>
<td>Physics A, B</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Physics A & Engineering Design A</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Physics 1 & Engineering Design, H</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Animal Behavior</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Forensic Science</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Marine Biology H,A</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Anatomy & Physiology H,A</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Genetics H</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Organic and Analytical Chemistry I H, A</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Organic and Analytical Chemistry II H</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Astronomy</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>AP Biology</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Chemistry</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Environmental Science</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Physics 1</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Physics 2</td>
<td>12</td>
<td>Full Year</td>
</tr>
<tr>
<td>AP Physics C</td>
<td>12</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

+ Course required for grade level

Note: All elective courses will be offered pending staff availability and student requests.

INTRODUCTION

Science is a human activity through which problems dealing with natural phenomena can be identified and proposed solutions can be tested. In this process, data is collected/analyzed and available knowledge is applied to explaining the results. Through this process, investigators add to the store of knowledge thereby helping people better understand their surroundings. Applications of this knowledge also may bring about changes in society and the cultural order, as well as having a direct impact on the quality of life.

The science requirement for graduation involves students in a systematic study of the earth and space, life, and physical sciences in three laboratory courses. As students study the natural phenomena that govern our world they will have a greater understanding of the dynamic systems that interact with one another. Students will study biological systems, and the systems that govern matter. They will be expected to model real-world science and demonstrate the thinking/process skills associated with science. Students beyond the ninth grade will have an opportunity to enroll in electives that provide insights into major fields of science. Laboratory activities are included in all science courses.

Randolph’s science curricula are aligned to the New Jersey Student Learning Standards in Science.

COURSE LEVELS
All Randolph High School science courses prepare students for college. In general, students at a higher level are expected to be more independent, more self-disciplined, and self-motivated. They will explore content more quickly and to a greater depth with emphasis on the analysis of data and interpretation of results. Their writing is expected to be more fluid and more sophisticated, and their thinking more rigorous and original. All science curricula will foster the development of positive attitudes toward science, better communication and thinking skills, career awareness in science, safety in science investigations, and the use of new technology in those investigations.

The required courses in Biology, Chemistry, and Physics/Environmental Science are offered at several levels to match student needs. Advanced Placement courses are offered in Biology, Chemistry, Environmental Science, and Physics. Honors and non-honors level electives are also offered. Students are placed in appropriate levels based on teacher recommendations, classroom performance, and performance on diagnostic assessments.

Safety
The use of contact lenses for corrective vision is restricted in learning environments that entail exposure to chemical fumes, vapors or splashes.

Science Course Offerings

- **Biology H/A/B**
- **Chemistry H/A/B**
- **Physics AP/A/B**
- **Environmental Science AP/A**

Fourth Year/Doubling up options (pre/co-requisites):

<table>
<thead>
<tr>
<th>Full Year AP Courses (Prerequisites)</th>
<th>Honors/A Level</th>
<th>←-semester→</th>
<th>A/B Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Biology (Biology H/A)</td>
<td>Genetics</td>
<td></td>
<td>Astronomy</td>
</tr>
<tr>
<td>AP Chemistry (Chemistry H/A)</td>
<td>Marine Biology</td>
<td></td>
<td>Forensic Science</td>
</tr>
<tr>
<td>AP Physics 2 (AP Physics 1)</td>
<td>Anatomy and Physiology</td>
<td></td>
<td>Animal Behavior</td>
</tr>
<tr>
<td>AP Physics C (AP Physics 1/Calculus)</td>
<td>Organic Chem/Adv Organic</td>
<td></td>
<td>Environmental (FY)</td>
</tr>
<tr>
<td>AP Environmental Science (Chemistry H/A)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE DESCRIPTIONS

BIOLOGY
Levels H, A, B SCI200, SCI210, SCI220
Grade 9 Full Year
NCAA Approved Course
This course is designed to give students a well-rounded background in key areas of biology. It introduces broad biological concepts and their application to all living systems. Fundamental concepts are discussed in varying degrees of depth depending on the level of the class. A major emphasis is placed on laboratory inquiries that allow the student to investigate various biological concepts and to develop process and analytical skills. Use of technology ranging from computers to laboratory equipment is emphasized. Major topics included are matter and energy as they travel through living systems; structure, function, and differentiation of cells; heredity and genetics from the molecular through the population level, ecosystem dynamics, and the evolution and classification of organisms. For the Honors level class reading and math skills should be excellent, students should be ready for independent self-motivated work, emphasis is placed on application and problem solving, abstract and visualization skills are important, and memorization is insufficient to be successful.

This course is required for all Grade 9 students.

Honors Prerequisite: 8th grade science teacher recommendation

CHEMISTRY
Levels H, A, B SCI300, SCI310, SCI320
Grades 9, 10 Full Year
NCAA Approved Course
This course provides students with an overview of chemistry and an understanding of the chemistry of matter. Using atomic schematization and structure as a foundation, bonding, chemical formulas, equations, periodicity and stoichiometric relationships will be explored. Gas laws and solubility factors will be employed to illustrate the interaction of pressure, concentration, temperature and reaction rates. Inquiry and process skills, laboratory techniques, and data collection and analysis are practiced and developed throughout the course.

Prerequisites: Biology (may be taken concurrently with supervisor approval) and Algebra I. Recommendation for the honors level must be obtained from a teacher.

PHYSICS
Levels A, B SCI410, SCI420
Grades 10, 11, 12 Full Year
NCAA Approved Course
This is an introductory course that will help students understand the universe through the basic laws of physics. Topics to be studied include mechanics, sound, light, electricity, circular motion, work, and energy. Emphasis will be place on problem solving, experimental laboratory work, and application of physics principles to authentic projects.

Prerequisite: Biology; Algebra II and Chemistry may be taken concurrently
PHYSICS A AND ENGINEERING DESIGN
Level A SCI810 (must also enroll in TECH810) Grades 10, 11, 12 Full Year
NCAA Approved Course
This is an introductory course that will help students understand the basic laws of physics that govern the universe. Topics to be studied include mechanics, sound, light, electricity, circular motion, work, and energy. Students will apply physics principles to engineering problems that will challenge their critical thinking and problem solving skills. The content is similar to Physics A, with the main difference being that students design and build most of the projects to be studied. NOTE: This is a double period course.

NOTE: This is a double period course. The Physics course and the Engineering course are taught in tandem during two consecutive periods. Both courses must be taken during the assigned periods.

Prerequisite: For A Level: Biology; Algebra II and Chemistry (may be taken concurrently)
Recommended but not required: Technology and Design

AP PHYSICS 1 AND ENGINEERING DESIGN
Level H SCI830 (must also enroll in TECH830) Grades 10, 11, 12 Full Year
NCAA Approved Course
This is an introductory course that will help students understand the basic laws of physics that govern the universe. Topics to be studied include mechanics, sound, light, electricity, circular motion, work, and energy. Students will apply physics principles to engineering problems that will challenge their critical thinking and problem solving skills. The content is similar to AP Physics 1 with the main difference being that students design and build most of the projects to be studied. Students will have the opportunity to receive honors credit for participation in this course. Honors level students will be expected to provide in-depth review and analysis of course content. NOTE: This is a double period course.

NOTE: This is a double period course. The Physics course and the Engineering course are taught in tandem during two consecutive periods. Both courses must be taken during the stated periods.

Prerequisite: For Honors Level: Biology; Precalculus and Chemistry (may be taken concurrently)
Recommended but not required: Technology and Design

ENVIRONMENTAL SCIENCE SCI800 Grades 10, 11, 12 Full Year
NCAA Approved Course
Environmental Science is now a full year course designed to show thematic connections between a variety of science disciplines including biology, chemistry, and physics. It gives students a coherent and realistic picture of the applications of scientific concepts as they manifest in our environment. During this course, students will focus on human population growth, natural resources, and ecosystem dynamics. The aim of this course is to increase understanding of the environmental challenges of today, while continuing to cultivate scientific critical thinking skills. This course can serve as one of the three laboratory sciences required for graduation.

Prerequisite: Biology and Chemistry (may be taken concurrently); Algebra I
ANIMAL BEHAVIOR SCI955 Grades 10, 11, 12 Semester
This course deals with the science of animal behavior on an individual, population, and interspecific basis. Laboratory work includes analytical experiments, field and laboratory observations, and data analysis. Students are expected to communicate their results in formal scientific papers. The major types of innate and acquired behavior will be studied with an emphasis on the evolution of adaptive behavior. Topics include taxis, reflexes, instinctive behavior, conditioned reflexes, imprinting, operant conditioning, observational learning, and reasoning in animals. Consideration will be given to social systems in animals including the concepts of sociobiology. Organisms studied will include protozoans, small invertebrates, fish, birds, and mammals.

Prerequisite: Biology; Chemistry (may be taken concurrently)

FORENSIC SCIENCE SCI945 Grades 11, 12 Semester
NCAA Approved Course
Forensic science is the application of multiple scientific disciplines to the investigation of criminal or civil questions of the law. In this course we will use biology, chemistry, and physics to analyze and interpret evidence within the realm of our legal system. We will begin with an introduction to scientific inquiry and the process of forensic investigation. We will then apply our knowledge of investigation to the analysis of trace evidence (hair, fiber, etc.), fingerprints, DNA, and blood. We will discuss and analyze the evidence revealed by bodies, crime scenes, and crime scene tools. Students will actively participate in labs and activities relating to the investigation of crime scenes and the analysis of evidence.

Prerequisites: Biology, Chemistry (may be taken concurrently)

MARINE BIOLOGY
Level H, A SCI845, SCI855 Grades 10, 11, 12 Semester
NCAA Approved Course
This course deals with the interrelationships of living things in the marine environment. The ecological dynamics of the estuaries, oceans and bays will be investigated. Laboratory investigations will include field studies of the physical environment and interactions with the organisms of the marine world. The use of technologies such as GPS, SONAR, remote sensing, satellite imagery and chemical water analysis employed by marine scientist will be utilized. The course is designed to give students hands-on experiences to better understand the biological systems of the marine environment.

Prerequisite: Honors Biology, Chemistry (Chemistry may be taken concurrently) and Algebra I

ANATOMY AND PHYSIOLOGY
Level H, A SCI875, SCI865 Grades 10, 11, 12 Semester
NCAA Approved Course
This course entails the study of the structure and function of the human body, commencing with a brief survey of all systems and how they interact to form the organism. The course will then focus on investigations of the cardiovascular, respiratory, nervous, skeletal, and digestive systems. The significance of histology to the understanding of the systems will also be discussed. Each unit includes anatomical, physiological and clinical applications to the subject.

Prerequisite: Biology and Chemistry (Chemistry may be taken concurrently)
GENETICS H
Level H SCI885 Grades 10, 11, 12 Semester
NCAA Approved Course
This hands-on, seminar course will examine a wide range of current topics in genetics as well as expand upon the genetic processes learned in students’ biology course. Topics include and are not limited to personal genomics, genetic testing, bioethics, gene editing and therapy, types and benefits of biotechnology as well as review and expansion of prior knowledge learned. Students also participate in online discussions of current events on a regular basis.
Prerequisite: Honors Biology, Honors Chemistry (may be taken concurrently); Algebra I.

ORGANIC AND ANALYTICAL CHEMISTRY I H
Level H, A SCI905, SCI900 Grades 11, 12 Semester
NCAA Approved Course
Students will engage in activities that develop basic organic laboratory skills such as melting point determination, synthesis, distillation and re-crystallization. The concept- oriented course delves into diverse topics such as organic mechanisms, IUPAC nomenclature, and classification of organic families, functional groups and organic reactions. An introduction to principles of analytical chemistry will also be provided such as equilibrium and electrochemistry.
Prerequisite: Biology; Chemistry Honors or Chemistry A (with chemistry teacher recommendation)

ORGANIC AND ANALYTICAL CHEMISTRY II
Level H SCI195 Grades 11, 12 Semester
NCAA Approved Course
Students will study modern analytical laboratory techniques such as high performance liquid chromatography, gas chromatography, and spectroscopy. Students will also test their own products and commercial grade equivalents in a laboratory setting. Advanced organic chemistry principles such as stereochemistry and chirality will be incorporated into the class. This course is recommended for students that aspire to careers in science or science related disciplines such as medicine, engineering, environmental science, marine biology, geology, or research.
Prerequisite: Organic and Analytical Chemistry

ASTRONOMY SCI925
Grades 10, 11, 12 Semester
This course is designed as an investigation of the world "beyond" Earth, highlighting Astronomy as a strictly observational science. Topics of study will include Moon-Earth-Sun relationships, the solar system, stars & their evolution, constellations, galaxies, and the Universe. Special emphasis will be placed on the development of ideas and instrumentation in Astronomy from a historical perspective, and what the future holds.
Prerequisite: Biology
AP BIOLOGY
Advanced Placement - Level AP SCI520 Grades 10, 11, 12 Full Year
NCAA Approved Course
This Advanced Placement course is designed to be an equivalent of an introductory college course in Biology. The goal of the course is to provide students with the scientific principles, concepts, and methodologies required to understand biological systems. The course stresses scientific principles and includes a strong laboratory component. Students are expected to take the AP Exam and are encouraged to take the SAT Subject Test in biology. It is recommended this course be taken as a junior.

Prerequisite: Biology Honors Level; Chemistry (Chemistry may be taken concurrently); Algebra IIA, or Algebra I IH taken concurrently; teacher recommendation. Students are encouraged to complete a summer assignment.

AP CHEMISTRY
Advanced Placement - Level AP SCI530 Grades 10, 11, 12 Full Year
NCAA Approved Course
This Advanced Placement course is designed to be the equivalent of an introductory college course in chemistry. The course emphasizes the mathematical and theoretical aspects of inorganic chemistry. Laboratory work involves freshman college experiments in inorganic chemistry and semi-micro qualitative analysis. Students are expected to take the AP Exam and are encouraged to take the SAT Subject Test in chemistry.

Prerequisite: Biology; Chemistry Honors; Physics (may be taken concurrently); Algebra II; Chemistry teacher recommendation.

AP ENVIRONMENTAL SCIENCE
Advanced Placement - Level AP SCI500 Grades 10, 11, 12 Full Year
NCAA Approved Course
This Advanced Placement course is designed to be the equivalent of an introductory college course in environmental science. The goal of the course is to provide students with the scientific principles, concepts, and methodologies required to understand the interrelationships of the natural world, to identify and analyze environmental problems both natural and human-made, to evaluate the relative risks associated with these problems, and to examine alternative solutions for resolving and/or preventing them. Laboratory and field investigations will be drawn from many areas of scientific study, such as biology, ecology, chemistry, physics, geology, meteorology and oceanography. This course stresses scientific principles and analysis, and includes a strong laboratory and field investigation component. Students are expected to take the AP Environmental Science Test.

Prerequisite: Biology and Chemistry (Chemistry may be taken concurrently); teacher recommendation.
AP PHYSICS 1
Advanced Placement – Level AP SCI420 Grades 10, 11, 12 Full Year
NCAA Approved Course
This course follows the curriculum set forth by the College Board and is equivalent to a first-year algebra-based college Physics course. Students will require a strong algebra background and knowledge of right triangle sine, cosine and tangent trigonometric ratios to be successful in this course. Topics include: kinematics, Newton’s Laws of motion, torque, rotational motion and angular momentum, gravitation and circular motion, work, energy, power, linear momentum, oscillations, mechanical waves, sound, and an introduction to electric circuits. There will be a focus on inquiry-based laboratory activities which challenge students to design and carry out experiments targeting certain learning objectives. After the AP exam in May, an additional survey of Electricity and Magnetism will be conducted as time permits. It is highly recommended and expected for all students to take the AP Physics 1 exam in May.

Prerequisite: Biology; Chemistry and Algebra II may be taken concurrently.

AP PHYSICS 2
Advanced Placement – Level AP SCI430 Grades 10, 11, 12 Full Year
NCAA Approved Course
This course follows the curriculum set forth by the College Board and is equivalent to a second-year algebra-based college Physics course. Students will require a strong algebra background and knowledge of right triangle sine, cosine and tangent trigonometric ratios to be successful in this course. Topics include: Fluids, Thermodynamics, Electricity, Magnetism, Optics, and a survey of Modern Physics. There will be a focus on inquiry-based laboratory activities which challenge students to design and carry out experiments targeting certain learning objectives. After the AP exam in May, an additional survey of Modern Physics will be conducted as time permits. It is highly recommended and expected for all students to take the AP Physics 2 exam in May.

Prerequisite: AP Physics 1

AP PHYSICS C
Advanced Placement - Level AP SCI510 Grades 11, 12 Full Year
NCAA Approved Course
The AP Physics “C” Level course includes topics in mechanics, electricity, and magnetism. Knowledge of calculus, algebra, and basic trigonometry is necessary for this course. The general areas covered are: kinematics, Newton’s laws of motion, work, energy, power, linear momentum, circular motion & rotation, oscillations & gravitation, electrostatics, electric circuits, magnetic fields, and electromagnetism. This course parallels college physics courses for students in physical sciences, engineering and some applied sciences. Students are expected to take the AP Exam and are encouraged to take the SAT II Subject Test in physics. Laboratory activities will incorporate application of modern computer and electronic technology. Concepts of basic physics will be reinforced and expanded through modern topical presentations in preparation for the AP Physics Test.

Prerequisite: Biology, Chemistry and Physics; Pre-Calculus; Calculus co-requisite; Physics teacher recommendation.
TECHNOLOGY & ENGINEERING COURSE OFFERINGS

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Grade Level</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology and Design</td>
<td>9,10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Principles of Engineering (A or H level)</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Robotics & Control Technology</td>
<td>10, 11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Physics and Engineering Design (A or H level)</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Drafting and Design</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Advanced Drafting</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Interior Design</td>
<td>9, 10, 11, 12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Architecture I</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Architecture II (A or H level)</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Basic Woods</td>
<td>9,10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Advanced Woods</td>
<td>9,10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Home Improvement</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Problem Solving in Woodworking</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
</tbody>
</table>

Note: All elective courses will be offered pending staff availability and student requests.

INTRODUCTION
The Technology and Engineering Program is dedicated to offering courses which enhance and enrich a student's technological awareness through applying academic skills to hands-on lab environments and project development. Students gain problem solving skills as they develop portfolios and projects in the various technological fields of study. Students also define problems and engineer solutions. The Pre-Engineering program will give students a foundation for pursuing science, technology, math, and/or engineering in college. The Architectural Engineering Design program prepares students for technical careers in architecture, CAD, and engineering. Students may select courses from one or both tracks based on their interests, talents, and goals for future study.

Pre-Engineering: Tech and Design; Transportation Tech; Power and Energy; Principles of Engineering; Robotics; Physics and Engineering Design
Architectural Engineering Design: Drafting and Design; Architecture I and II; Advanced Drafting
Other Electives: Basic Woods; Home Improvement; Advanced Woods; Problem Solving in Woodworking
COURSE DESCRIPTIONS

TECHNOLOGY AND DESIGN
TEC815 Grades 9 – 12 Semester
This course is designed to actively involve you in the solution of technological problems. You will
develop critical thinking skills using an interdisciplinary approach to problem solving. You will be
involved in designing and the hands-on building of solutions to problems in the areas of energy
systems, formulation technology, construction, and manufacturing.

PRINCIPLES OF ENGINEERING
Level H, A TEC170, TEC180 Grades 9 – 12 Full Year
Principles of Engineering is a course that actively involves students to learn about the fundamentals
of design and manufacture. An understanding of the basic principles of mathematics and science,
achieved primarily through hands-on activities, will help students develop solutions that make
efficient use of manmade and natural materials. This course will help students realize the
interrelatedness of history, economics, philosophy, ethics, and writing, which will prepare them for
rigorous study in any of the fields of engineering.
For Honors Level: Students will be required to use original and critical thinking while working more
independently on activities which incorporate advanced engineering principles.

ROBOTICS AND CONTROL TECHNOLOGY** TEC110 Grades 10, 11, 12 Full Year
This course is designed to allow you to explore the world of "control", having a device perform a
function that a human wants it to do. This concept of control is the basis for most areas of modern
technology and it will help you see that "smart" machines are nothing more than the end result of
people incorporating their intelligence into the machine's design. You'll be designing and building
models related to the concepts of control.
Recommended: Technology and Design or Transportation Technology

PHYSICS AND ENGINEERING DESIGN (Students Must Also Be Enrolled In SCI810 or SCI830)
Level H, A TECH810 & TECH830 Grades 11, 12 Full Year
NCAA Approved Course
This is an introductory course, offered at the Honors and A level that will help students understand the
basic laws of physics that govern the universe. Topics to be studied include mechanics, sound, light,
electricity, circular motion, work, and energy. Students will apply physics principles to engineering
problems that will challenge their critical thinking and problem solving skills. The content is similar to
AP Physics 1 and Physics A, with the main difference being that students design and build most of the
projects to be studied. Students will have the opportunity to receive honors credit for participation in
this course. Honors level students will be expected to provide in-depth review and analysis of course
content.
NOTE: This is a double period course. The Physics course and the Engineering course are taught in
tandem during two consecutive periods. Both courses must be taken during the stated periods.
Prerequisite: For A Level: Biology; Chemistry (may be taken concurrently); Algebra II;
For Honors Level: Biology; Chemistry (may be taken concurrently); Pre-Calculus (may be
taken concurrently)
Recommended but not required: Technology and Design or Transportation Technology I

DRAFTING AND DESIGN TEC120 Grades 9 – 12 Full Year
++ Course is part of a Pathway Program. For information on Pathway Programs please refer to the Special Programs
Handbook on the RHS Counseling Site.
This is a “must” course for anyone interested in engineering or architecture. You will be introduced to the language of drafting and become familiar with the different fields within the profession. You will develop fundamental skills including drawing and the use of a CAD (computer-aided drafting) program.

ADVANCED DRAFTING
TEC130
Grades 9 – 12
Full Year

This is a full year course for any high school student who has completed Drafting/Design and would like to pursue advanced studies in drafting. In this course of study, students will gain a strong knowledge of two-dimensional and three-dimensional engineering CAD operations and design. Additionally, students will experience real world research and communications that are necessary to be successful in an increasingly technological world. Applications of mechanical design, industrial design, and model making will be explored.

Prerequisite: Drafting & Design

INTERIOR DESIGN
TEC190
Grades 9 – 12
Full Year

The goal of the course is to introduce the student to the profession of interior design. Students will gain an understanding of the elements and principles of residential and commercial interior design. Students will learn to make appropriate selections of colors, fabrics, furnishings, lighting and furniture. Students will develop skills in architectural drafting and space planning through the use of hand and computerized drafting techniques. Students will use measurements to scale rooms and create floor plans for a variety of spaces. Class projects include decorating sample rooms and designing floor plans. Students will also explore potential careers in the interior design and related fields.

ARCHITECTURE I
TEC140
Grades 10, 11, 12
Full Year

Architecture I is designed to provide the basic skills necessary to produce a set of architectural plans for residential construction. A preliminary set includes a plot plan, foundation plan, first and second floor plans, door and window schedules, and a perspective drawing. You will continue to develop your skills using CAD (computer-aided drafting) throughout the year.

Prerequisite: Drafting & Design

ARCHITECTURE II
TEC150, TEC160
Grades 11, 12
Full Year

Levels H, A

In the second year of architectural drawing you will continue and enhance your CAD and table skills. You will continue to develop an individual portfolio of a complete set of architectural working drawings which will contain four elevation drawings, longitudinal and cross sectional plans, and construction details. Architecture II relies extensively on CAD drawings. Portfolios developed in Architecture I will be the basis to begin the units of study in this course.

Honors Level: Students will be required to use original and critical thinking while working more independently on activities which incorporate advanced architecture principles.

Prerequisite: Architecture I
BASIC WOODS TEC805 Grades 9 - 12 Semester
This semester course deals with the fundamental aspects of woodworking. Students will gain experience in shop safety, reading and preparing shop working drawings, wood identification and classification, using a variety of hand and power tools, basic wood joinery, and a variety of finishing procedures. Students will design and construct several woodworking projects that encompass good design, construction and finishing techniques.

HOME IMPROVEMENT TEC100 Grades 9 – 12 Full Year
This course will provide an overview of many construction, repair and remediation activities that a homeowner often encounters. You will gain experience in shop safety and basic instruction in the following areas: carpentry, blueprints/design, measurements, sheetrock, painting/wall coverings, plumbing, electrical wiring, permits, tile, flooring, kitchen design, and the safe use of hand and power tools. This “hands-on” class will provide the future homeowner with the skills to become a knowledgeable consumer.

Prerequisite: Basic Woods

ADVANCED WOODS TEC810 Grades 9 – 12 Semester
This semester course deals with the fundamental aspects of woodworking. Students will gain experience in shop safety, reading and preparing shop working drawings, wood identification and classification, using a variety of hand and power tools, basic wood joinery, and a variety of finishing procedures. Students will design and construct several woodworking projects that encompass good design, construction and finishing techniques.

Prerequisite: Basic Woods

PROBLEM SOLVING IN WOODWORKING TEC855 Grades 10, 11, 12 Semester
This course is an opportunity for students who already have woodworking skills to engage in self-directed, sophisticated woodworking. They will be given some challenging problems by the instructor, but will spend most of their time using a variety of woodworking materials and methods, including problem solving methods, to create their own designs in wood. Some other materials and techniques may also be employed, such as soldering, sandblasting glass and mirrors, and using state of the art equipment like a 3-D carving machine.

Prerequisite: Basic and Advanced Woods
BUSINESS COURSE OFFERINGS

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Grade Level</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSINESS ADMINISTRATION:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marketing I</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Marketing II Honors</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Accounting I</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Accounting II Honors</td>
<td>10,11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Business Principles Honors</td>
<td>11,12</td>
<td>Full Year</td>
</tr>
<tr>
<td>Starting a Business/Entrepreneurship</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>International Business</td>
<td>11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Introduction to Business</td>
<td>9,10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Personal Finance</td>
<td>9,10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Sports and Entertainment Management</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Digital Marketing</td>
<td>10,11,12</td>
<td>Semester</td>
</tr>
<tr>
<td>Microsoft Office Professional</td>
<td>9,10,11,12</td>
<td>Full Year</td>
</tr>
</tbody>
</table>

Note: All elective courses will be offered pending staff availability and student requests

INTRODUCTION

The Business Department believes all students should have an understanding of the business world that shapes and impacts many facets of our society and our lives. The course offerings allow students to explore a wide range of business-related topics that will prepare them for life. The Business Department also offers advanced courses designed to prepare students who wish to major in business in college as well as courses aimed at preparing students wishing to enter the business world following high school graduation.
MARKETING I
BUS120
Grades 10, 11, 12
Full Year

If you have ever seen a TV commercial, magazine or Internet advertisement, or selected an article of merchandise to purchase, you have taken part in the marketing cycle. This class will allow students to examine marketing and the entire process that a product goes through before it reaches the consumer. Students will learn about the inception of new product ideas, research and development, promotion of the new product and selling the product to consumers. Students will be introduced to perspectives on all aspects of marketing including advertising, sales, promotion, direct and database marketing, business-to-business marketing, marketing research and customer relationships to product producers.

MARKETING II HONORS
BUS130
Grades 11, 12
Full Year

This course will promote student learning of advanced concepts and processes in marketing that build on the learning from the Marketing I course. Students will be given the opportunity to deepen their marketing experience by understanding the role of effective market research. They will also investigate how new companies create market opportunities. The role of the Internet and other technologies that have revolutionized the marketing industry will be explored. Students will complete their own marketing project which includes a marketing plan/analysis.

Prerequisite: Minimum grade average of B in Marketing I.

INTRODUCTION TO BUSINESS
BUS835
Grades 9, 10, 11, 12
Semester

This course is designed to promote student investigation of basic business principles that can be used in future coursework and in life. Topics will include entrepreneurship, marketing, business finance, and consumerism. Basic accounting, checking, savings, budgets, insurance, small business ownership and management will also be included. This course will provide a solid foundation for students who wish to pursue other business courses (accounting, marketing, etc.).

ACCOUNTING I
BUS100
Grades 9, 10, 11, 12
Full Year

This course is designed to help the student understand the basic accounting principles and procedures used in keeping financial records for businesses that operate in the private enterprise economy of the United States. Students will learn about Investment Products, Credit, and various types of Insurance beneficial to their future. Students will also learn the “language of business” and be introduced to the elements of the accounting cycle, the “value” of money, prepare financial reports, reconcile bank statements, research and complete case studies, and learn how to run their own businesses. Additionally, students will learn how to compute personal and corporate income taxes. This course meets the Financial Literacy requirement.

ACCOUNTING II HONORS
BUS110
Grades 10, 11, 12
Full Year

Students will learn advanced concepts and procedures in accounting using a college level textbook. Students will analyze financial statements, compete in the New Jersey Stock Market Game and the H&R Block Budget Challenge where they will prepare a personal budget. Students will learn about corporate ethics and investigate the effects of alleged corporate greed on our society. Students will be given the opportunity to enroll in the Fairleigh Dickinson Middle College program where they may earn three college credit hours from Fairleigh Dickinson University. These credits can be transferred to many accredited colleges throughout the U.S. Tuition fees apply for the Fairleigh Dickinson Middle College Program.

Prerequisite: Minimum grade average of B in Accounting I
BUSINESS PRINCIPLES HONORS BUS140 Grades 11,12 Full Year
This course is designed to assist students in understanding business so that they can use business principles throughout their lives. Students learn about ethics, management, economics, marketing, production, entrepreneurship, leadership, and more. Students will explore the free market society along with the integration of global issues. At the end of this course students can use their management skills and general business knowledge wherever they go and in whatever career they pursue – including government agencies, charities and social causes. Students may earn 3 college credits through Fairleigh Dickinson’s Middle College Program by successfully completing this course with a C or better. Tuition fees apply for the Fairleigh Dickinson Middle College Program.

Prerequisite: Minimum grade average of B in Marketing I, Accounting I, or AP Economics

STARTING A BUSINESS/ENTREPRENUERSHIP BUS845 Grades 11,12 Semester
This course is designed to explore what students must know about themselves and business in order to be successful small business owners (entrepreneurs). Students will cover the topics of understanding the important personal qualities necessary to be successful business owners, choosing a business, organizing their business, understanding their markets and competitors, marketing their products and services, and planning their financial needs.

INTERNATIONAL BUSINESS BUS855 Grades 11,12 Semester
This course will allow the student to explore the world of business from the global perspective. Students will examine how various cultures and economic structures impact on business activities and decisions. Students will explore relevant topics including cultural exchange, import and export, currency and risk management, marketing and promotion. Students will understand how successful businesses operate in the global marketplace.

PERSONAL FINANCE BUS865 Grades 9,10,11,12 Semester
This course satisfies the graduation requirements related to economics and financial literacy. Personal Finance provides an essential foundation in everyday financial living skills. Students will be able to apply problem solving techniques and decision making processes to make sound economic choices. They will acquire and use skills for budget preparation, saving and investing, insurance protection, income tax preparation, wise use of credit, transportation choices, and housing options. Consumer protection laws and fraud protection are investigated. Technology will be used to do research on the internet, access financial simulations, complete interactive activities, and use computer applications to complete assignments and projects.

SPORTS AND ENTERTAINMENT MANAGEMENT BUS875 Grades 10, 11, 12 Semester
This course is designed to develop a thorough understanding of the marketing concepts and practices that apply to sports promotion, sponsorship, product licensing, and entertainment event management and marketing. This course is based on a sports stadium management simulation that includes hiring a football team, setting ticket prices, negotiating corporate sponsorships, hiring event staff, and booking entertainment concerts.

Prerequisite: Introduction to Business or Marketing I
DIGITAL MARKETING** BUS885 Grades 10, 11, 12 Semester
This course is designed to explore channels of non-traditional (TV, Print, Radio) advertising. It is the promotion of products or brands via one or more forms of electronic media tools such as social media, online listening and monitoring, web analytics, search engine optimization, and email marketing. Students will learn the fundamentals of marketing concepts with a focus on the methods and challenges in the digital marketing arena.

Prerequisite: Introduction to Business or Marketing I

MICROSOFT OFFICE PROFESSIONAL** BUS150 Grades 9,10,11,12 Full Year
Students learn all the components of Microsoft Office: Word, Excel, Access and PowerPoint. This is the #1 software used in business today. Many colleges expect their students to know how to successfully operate Office. Projects include creating a tribute PowerPoint presentation to your family or favorite band. Create a movie or automobile database using Access. Create a stock portfolio or sports statistics spreadsheet using Excel. Create a satirical newspaper or a business brochure using Word. Students who are juniors and seniors can elect to earn 3 transferable college credits from Fairleigh Dickinson University (pending approval). This course provides an opportunity to obtain MOS Certification. This course is highly recommended for all college and non-college bound students.

++ Course is part of a Pathway Program. For information on Pathway Programs please refer to the Special Programs Handbook on the RHS Counseling Site.